Table 4 and 5
Scenario 1
Platform | Image | |||
Vanilla | opt. RT | |||
xm → | µ ↑ | xm → | µ ↑ | |
Bare-metal | 16.7% | 0.33 | 60.0% | 3.30 |
Virtual Machine | 25.0% | 2.58 | 58.3% | 4.00 |
Container | 16.7% | 1.50 | 66.7% | 3.83 |
Scenario 2
Platform | Image | |||
Vanilla | opt. RT | |||
xm → | µ ↑ | xm → | µ ↑ | |
Bare-metal | 100.0% | 1.33 | 58.3% | 0.83 |
Virtual Machine | 66.7% | 2.58 | 50.0% | 1.25 |
Container | 71.4% | 2.29 | 83.3% | 1.42 |
Reproducibility
CSV Timestamp Data
All sampled CSV Data for scenario1 are available under https://doi.org/10.14459/2023mp1718824.
All sampled CSV Data for scenario2 are available under https://doi.org/10.14459/2024mp1736868.
EVT Modeling and Evaluation
# Install dependencies
apt install -y zstd
pip install evt
pip install sympy
# Get EVT script
The script is located at https://github.com/wiednerf/container-in-low-latency/blob/main/scenario2/scripts/evt/evt-model.py
python3 evt-model.py --data <filename.csv.zst>
# Results are stored in <filename.csv.evt.json>
# Plots of the MLE fitting in <filename.csv.mle.pdf>